554 research outputs found

    Shear bands in granular flow through a mixing length model

    Full text link
    We discuss the advantages and results of using a mixing-length, compressible model to account for shear banding behaviour in granular flow. We formulate a general approach based on two function of the solid fraction to be determined. Studying the vertical chute flow, we show that shear band thickness is always independent from flowrate in the quasistatic limit, for Coulomb wall boundary conditions. The effect of bin width is addressed using the functions developed by Pouliquen and coworkers, predicting a linear dependence of shear band thickness by channel width, while literature reports contrasting data. We also discuss the influence of wall roughness on shear bands. Through a Coulomb wall friction criterion we show that our model correctly predicts the effect of increasing wall roughness on the thickness of shear bands. Then a simple mixing-length approach to steady granular flows can be useful and representative of a number of original features of granular flow.Comment: submitted to EP

    Shear-transformation-zone theory of plastic deformation near the glass transition

    Full text link
    The shear-transformation-zone (STZ) theory of plastic deformation in glass-forming materials is reformulated in light of recent progress in understanding the roles played the effective disorder temperature and entropy flow in nonequilibrium situations. A distinction between fast and slow internal state variables reduces the theory to just two coupled equations of motion, one describing the plastic response to applied stresses, and the other the dynamics of the effective temperature. The analysis leading to these equations contains, as a byproduct, a fundamental reinterpretation of the dynamic yield stress in amorphous materials. In order to put all these concepts together in a realistic context, the paper concludes with a reexamination of the experimentally observed rheological behavior of a bulk metallic glass. That reexamination serves as a test of the STZ dynamics, confirming that system parameters obtained from steady-state properties such as the viscosity can be used to predict transient behaviors.Comment: 15 pages, four figure

    Gravity-driven Dense Granular Flows

    Full text link
    We report and analyze the results of numerical studies of dense granular flows in two and three dimensions, using both linear damped springs and Hertzian force laws between particles. Chute flow generically produces a constant density profile that satisfies scaling relations suggestive of a Bagnold grain inertia regime. The type of force law has little impact on the behavior of the system. Bulk and surface flows differ in their failure criteria and flow rheology, as evidenced by the change in principal stress directions near the surface. Surface-only flows are not observed in this geometry.Comment: 4 pages, RevTeX 3.0, 4 PostScript figures (5 files) embedded with eps

    Granular Elasticity without the Coulomb Condition

    Full text link
    An self-contained elastic theory is derived which accounts both for mechanical yield and shear-induced volume dilatancy. Its two essential ingredients are thermodynamic instability and the dependence of the elastic moduli on compression.Comment: 4pages, 2 figure

    Transverse instability of dunes

    Full text link
    The simplest type of dune is the transverse one, which propagates with invariant profile orthogonally to a fixed wind direction. Here we show numerically and with a linear stability analysis that transverse dunes are unstable with respect to along-axis perturbations in their profile and decay on the bedrock into barchan dunes. Any forcing modulation amplifies exponentially with growth rate determined by the dune turnover time. We estimate the distance covered by a transverse dune before fully decaying into barchans and identify the patterns produced by different types of perturbation.Comment: 4 pages, 3 figures; To appear in Physical Review Letter

    Modelling formation and evolution of transverse dune fields

    Full text link
    We model formation and evolution of transverse dune fields. In the model, only the cross section of the dune is simulated. The only physical variable of relevance is the dune height, from which the dune width and velocity are determined, as well as phenomenological rules for interaction between two dunes of different heights. We find that dune fields with no sand on the ground between dunes are unstable, i.e. small dunes leave the higher ones behind. We then introduce a saturation length to simulate transverse dunes on a sand bed and show that this leads to stable dune fields with regular spacing and dune heights. Finally, we show that our model can be used to simulate coastal dune fields if a constant sand influx is considered, where the dune height increases with the distance from the beach, reaching a constant value.Comment: 18 pages including 9 figure

    Aeolian transport layer

    Full text link
    We investigate the airborne transport of particles on a granular surface by the saltation mechanism through numerical simulation of particle motion coupled with turbulent flow. We determine the saturated flux qsq_{s} and show that its behavior is consistent with a classical empirical relation obtained from wind tunnel measurements. Our results also allow to propose a new relation valid for small fluxes, namely, qs=a(uut)αq_{s}=a(u_{*}-u_{t})^{\alpha}, where uu_{*} and utu_{t} are the shear and threshold velocities of the wind, respectively, and the scaling exponent is α2\alpha \approx 2. We obtain an expression for the velocity profile of the wind distorted by the particle motion and present a dynamical scaling relation. We also find a novel expression for the dependence of the height of the saltation layer as function of the wind velocity.Comment: 4 pages, 4 figure

    The song of the dunes as a self-synchronized instrument

    Full text link
    Since Marco Polo (1) it has been known that some sand dunes have the peculiar ability of emitting a loud sound with a well defined frequency, sometimes for several minutes. The origin of this sustained sound has remained mysterious, partly because of its rarity in nature (2). It has been recognized that the sound is not due to the air flow around the dunes but to the motion of an avalanche (3), and not to an acoustic excitation of the grains but to their relative motion (4-7). By comparing several singing dunes and two controlled experiments, one in the laboratory and one in the field, we here demonstrate that the frequency of the sound is the frequency of the relative motion of the sand grains. The sound is produced because some moving grains synchronize their motions. The existence of a velocity threshold in both experiments further shows that this synchronization comes from an acoustic resonance within the flowing layer: if the layer is large enough it creates a resonance cavity in which grains self-synchronize.Comment: minor changes, essentially more references

    Stratification Instability in Granular Flows

    Full text link
    When a mixture of two kinds of grains differing in size and shape is poured in a vertical two-dimensional cell, the mixture spontaneously stratifies in alternating layers of small and large grains, whenever the large grains are more faceted than the small grains. Otherwise, the mixture spontaneously segregates in different regions of the cell when the large grains are more rounded than the small grains. We address the question of the origin of the instability mechanism leading to stratification using a recently proposed set of equations for surface flow of granular mixtures. We show that the stable solution of the system is a segregation solution due to size (large grains tend to segregate downhill near the substrate and small grains tend to segregate uphill) and shape (rounded grains tend to segregate downhill and more faceted grains tend to segregate uphill). As a result, the segregation solution of the system is realized for mixtures of large-rounded grains and small-cubic grains with the large-rounded grains segregating near the bottom of the pile. Stability analysis reveals the instability mechanism driving the system to stratification as a competition between size-segregation and shape-segregation taking place for mixtures of large-cubic grains and small-rounded grains. The large-cubic grains tend to size-segregate at the bottom of the pile, while at the same time, they tend to shape-segregate near the pouring point. Thus, the segregation solution becomes unstable, and the system evolves spontaneously to stratification.Comment: 10 pages, 10 figures, http://polymer.bu.edu/~hmakse/Home.htm

    Continuum approach to wide shear zones in quasi-static granular matter

    Get PDF
    Slow and dense granular flows often exhibit narrow shear bands, making them ill-suited for a continuum description. However, smooth granular flows have been shown to occur in specific geometries such as linear shear in the absence of gravity, slow inclined plane flows and, recently, flows in split-bottom Couette geometries. The wide shear regions in these systems should be amenable to a continuum description, and the theoretical challenge lies in finding constitutive relations between the internal stresses and the flow field. We propose a set of testable constitutive assumptions, including rate-independence, and investigate the additional restrictions on the constitutive relations imposed by the flow geometries. The wide shear layers in the highly symmetric linear shear and inclined plane flows are consistent with the simple constitutive assumption that, in analogy with solid friction, the effective-friction coefficient (ratio between shear and normal stresses) is a constant. However, this standard picture of granular flows is shown to be inconsistent with flows in the less symmetric split-bottom geometry - here the effective friction coefficient must vary throughout the shear zone, or else the shear zone localizes. We suggest that a subtle dependence of the effective-friction coefficient on the orientation of the sliding layers with respect to the bulk force is crucial for the understanding of slow granular flows.Comment: 11 pages, 7 figure
    corecore